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Abstract. The electronic transmission across metal/conjugated-oligomer/metal structures is
discussed, emphasizing the role of lattice fluctuations in short oligomer chains. Four cases
are discussed: (a) one oligomer chain, (b) two oligomer chains, (c) chains which form a
two-dimensional (2D) structure, and (d) chains which form a three-dimensional (3D) structure,
sandwiched between metal contacts. The lattice fluctuations are approximated by white-noise
disorder. For the one-chain case, resonant tunnelling occurs when the energy of the incoming
electron coincides with an electronic level of the oligomer and the corresponding peak diminishes
in intensity on increasing the strength of the disorder. Due to the lattice fluctuations, there is
an enhancement of the electronic transmission for energies that lie within the electronic energy
gap of the oligomer. In the two-chain case the spatial mirror symmetry with respect to the
middle line of the two chains is broken when fluctuations are introduced and coherence between
the wave functions of the two chains is partly lost. For the 2D and 3D cases the momentum
perpendicular to the oligomer chains is no longer conserved when fluctuations are considered
and thus a ‘scattered’ flux, which represents a deviation from the ‘specular’ flux, appears. The
integrated scattered flux over the energy is a measure of the strength of the fluctuations in the
oligomers. If only one of the oligomer chains exhibits lattice fluctuations, the incoming electrons
can optimize their path so as to tunnel through the chains with a larger transmission: when the
energy of the incoming electron is larger than the gap of the ordered oligomer, the electrons
avoid the disordered chain; when the energy of the incoming electron lies in the gap of the
ordered oligomer, the probability of electrons being near the disordered chain is enhanced.

1. Introduction

Conjugated polymers have emerged as an important class of materials due to their novel
physical and chemical properties [1] and also due to their technological applications in
optoelectronic devices [2–4]. With recent progress in controlled processing of polymers,
organic tunnelling devices such as metal/conjugated-oligomer/metal structures have been
fabricated. Several experimental groups have observed electronic transmission through
‘molecular wires’ attached to two metallic contacts [5–8]. Organic self-assembled
monolayers have also been used to modify the injection properties of contacts in organic
light-emitting diodes [9, 10]. Because disorder is unavoidable in conjugated polymers, it
is important to systematically investigate its role as regards the properties of these organic
electronic materials. Disorder could be of extrinsic origin, e.g. structural inhomogeneities or
defects, or intrinsic origin, such as quantum or thermal lattice fluctuations. It is well known
that conjugated polymers are different from conventional semiconductors in that they are
flexible, and thus considering lattice effects, e.g. polaron formation and lattice fluctuations,
is critical for understanding the electronic, optical and transport properties of these materials
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[1, 11, 12]. In this paper we will focus on the lattice fluctuation (i.e. intrinsic disorder) effects
in the metal/conjugated-oligomer/metal structures. In most previous calculations of organic
tunnelling structures, the role of lattice fluctuations has not been taken into account [13–15].

We have previously considered a single oligomer chain between two metal contacts
using a tight-binding model [16]. We approximated the lattice fluctuations as white-noise
disorder and showed that resonant transmission occurs when the energy of an incoming
electron coincides with an electronic level of the oligomer. Lattice fluctuations cause the
intensity of the transmission peaks to diminish. Moreover, lattice fluctuations enhance
transmission for energies that lie within the electronic gap of the oligomer. For sufficiently
strong disorder, we found a transmission peak within the gap. Here we extend this previous
work by considering systems of several oligomer chains. To investigate the effects of lattice
fluctuations on symmetry considerations we first consider two oligomer chains without
any coupling. Lattice fluctuations are found to break the mirror symmetry of the wave
function between the chains. As a consequence, previously forbidden tunnelling from a
symmetric state to an antisymmetric state becomes allowed. In addition, disorder results in
the loss of coherence between the two oligomer chains. We then consider a two-dimensional
array of oligomer chains sandwiched between two metal contacts. There is no electronic
(e.g. hopping) or elastic coupling between the chains except via the metals. When the lattice
fluctuations in oligomer chains are included, the electron momentum perpendicular to the
chains is no longer conserved. We define a ‘scattered’ flux as the electron transmitted (and
reflected) in all directions except for the direction of the incoming electron (and specularly
reflected electron). The scattered flux serves to quantify disorder in the system. Like in
the one-chain case, we find that fluctuations decrease the transmission at discrete electronic
levels of the oligomer, and enhance it at energies in the gap of the ordered oligomer.
We also study a case in which all chains were ordered except for the middle one to see
whether there is ‘filamentary flow’ in the transmission path. For energy of the incoming
electron coincident with a discrete energy level of the oligomer, we find a peak in the
charge density at the left-hand interface at the disordered chain and a valley at the right-
hand interface. We also find charge-density oscillations away from the disordered chain
along the interface. These results indicate that the electrons avoid the disordered chain to
optimize the transmission pathway. In contrast, when the energy of the incoming electron
is in the gap, the disordered chain provides a pathway for disorder-enhanced transmission.
We extended the 2D calculations to 3D and find results similar to those for the 2D case.
However, the 3D network provides a much larger choice of transmission paths when a
single disordered chain is embedded in a 3D network of ordered chains.

The paper is organized as follows. In section 2 we describe the tight-binding model
for the oligomer, metal, and interfaces, and briefly recapitulate the single-chain results. We
then consider the case of two chains. The concepts of a symmetry-broken transmission
and the loss of coherence due to disorder are introduced. Section 3 deals with a 2D array
of oligomer chains. The concepts of a scattered flux and ‘avoided flow’ are introduced.
In section 4 we extend the calculations to a 3D array of chains. Section 5 contains some
concluding remarks.

2. Oligomer chains

2.1. A single oligomer chain

Before we discuss the two-chain, 2D, and 3D cases, it is instructive to first introduce the
model and summarize the results for a single chain [16]. We model the single-chain tunnel
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structure, metal/conjugated-oligomer/metal, by the Hamiltonian

H = Hmetal+Holigomer+Hinterface. (1)

For a single oligomer chain with 2N atoms sandwiched between two semi-infinite metal
leads, we describe the metal by a one-dimensional, non-interacting tight-binding model:

Hmetal=
−1∑
l=∞

(−t0c†l cl+1+ HC)+
∞∑

l=2N+1

(−t0c†l cl+1+ HC) (2)

and the interfaces by

Hinterface= −t1(c†0c1+ c†2Nc2N+1+ HC). (3)

Herec†l (cl) denotes the electron creation (annihilation) operator at sitel, t0 is the electronic
hopping integral for the neighbouring metal sites, and the spin indices are implicit inl. For
this structure the energy spectrum is given byEk = −2t0 cosk. The hopping integral at the
contacts between the metal and the conjugated oligomer (t1) is in general different fromt0.

The oligomer chain is modelled by a Su–Schrieffer–Heeger Hamiltonian [1],

Holigomer=
2N∑
l=1

hl,l+1(c
†
l cl+1+ HC) (4)

wherehl,l+1 = −t [1 − (−1)lδl ] and δl is the lattice distortion at sitel of the oligomer. In
the oligomer, the lattice is dimerized and the lattice sites fluctuate around their equilibrium
positions. Thus we can writeδl = δ0 + ξl . The lattice fluctuations can be approximated as
static white-noise disorder with a Gaussian distribution〈ξlξl′ 〉 = 2Dδl,l′ . HereD measures
the strength of the fluctuations, and can be written asD = λ coth(ω/2T ), whereω is the
optical-phonon frequency of the oligomer,T is the temperature, andλ is a parameter [11].
Thus both quantum and thermal fluctuations are included. The fluctuation strength can be
extracted from experiments, e.g. the width of the intragap ‘tail’ states in the luminescence
spectra of polymers [17], and for polyacetylene-like polymersλ ∼ 0.02. Note that, while
the tunnelling matrix elements (t0, t1) can be estimated with reasonable accuracy from the
experimental data for many conjugated polymers, accurate determination ofD remains an
important outstanding experimental task.

For an incoming electron with energyEk, the transmission coefficient is computed by
solving the Schr̈odinger equationH |9〉 = Ek|9〉. The wave function can be represented
by the Wannier basis|9〉 = ∑∞l=−∞ Cl|l〉. In the left-hand metal lead, the wave function
includes two parts, the incident and reflected waves,Cl = eikl + Re−ikl for −∞ < l 6 0.
Similarly, in the right-hand metal lead, the wave function is an outgoing wave,Cl = T eikl

for 2N + 16 l <∞ [16].
For the single oligomer chain, we found that the lattice fluctuations fundamentally

change the electronic transmission at energies corresponding to electronic levels of the
ordered oligomer and enhance the electronic transmission at energies in the gap of the
ordered oligomer. When the fluctuations are sufficiently strong, a transmission maximum
in the gap is observed, which can be associated with virtual soliton–antisoliton states.

2.2. Two oligomer chains

To illustrate the effect of lattice fluctuations on symmetry considerations, we consider two
uncoupled oligomer chains with the same length and structure (figure 1) modelled by

Holigomer=
∑
i=1,2

2N∑
l=1

hill+1(c
†
licl+1i + HC) (5)
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Figure 1. A schematic diagram of a two-oligomer-chain tunnel structure. There is no coupling
between the two chains in the metal contacts.

wherei (=1, 2) is the index of the chains andhill+1 = −t [1− (−1)lδil ]. For simplicity, we
describe the metal by two one-dimensional non-interacting tight-binding chains without any
electronic coupling,

Hmetal=
∑
i=1,2

[ −1∑
l=−∞

(−t0c†licl+1i + HC)+
∞∑

l=2N+1

(−t0c†licl+1i + HC)

]
. (6)

The metal interacts with the oligomer chains at the interfaces as follows:

Hinterface= −t1
∑
i=1,2

(c
†
0ic1i + c†2Nic2N+1i + HC). (7)

The lattice of the oligomer in each chain fluctuates around its equilibrium position and
it can be approximated by white-noise disorder as in the one-chain case. When the
lattice fluctuations are included, at a specific time, the two chains have different lattice
configurations although they have the same fluctuation strength, and the two chains are no
longer identical. The lattice fluctuations will affect the correlation between the two chains
as well as the properties of an individual chain.

2.2.1. Symmetry-breaking effects.In the absence of lattice fluctuations, this two-chain
system has a spatial mirror symmetry with respect to the middle line between the two
chains. We construct the symmetric Wannier basis

|l+〉 = 1√
2
(|l1〉 + |l2〉) (8)

and the antisymmetric one

|l−〉 = 1√
2
(|l1〉 − |l2〉). (9)

Here 1 and 2 are chain indices.
For an incoming electron with energyEk, by solving the Schr̈odinger equationH |ψ±k 〉 =

Ek|ψ±k 〉, we obtain the transmission coefficients of both the symmetric wave function (T++)
and the antisymmetric wave function (T−−). Tunnelling from the symmetric state to the
antisymmetric one (T+−) or vice versa (T−+) is forbidden. However, when the fluctuations
of the oligomer lattices are considered, this symmetry is broken. Thus, the symmetric and
antisymmetric wave functions are mixed, and the transmission coefficientsT+− and T−+
are no longer equal to zero. For the incoming electron with a symmetric wave function

|ψ+i 〉 = eikl|l+〉 −∞ < l 6 0 (10)

we write the wave function of the outgoing electron as

|ψo〉 = eikl(γ++|l+〉 + γ+−|l−〉) 2N + 16 l <∞. (11)
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Figure 2. Electronic transmission for a device structure with two eight-atom oligomer chains as
a function of the energy of the incoming electron. The parameters aret = t0 = 1, t1 = 0.8, and
δ0 = 0.2. The incoming electron has a symmetric wave function. The solid line describesT++
(T+− ≡ 0) for D = 0; the short- and long-dashed lines representT++ andT+− for D = 0.05,
respectively; the dotted and dot–dashed lines representT++ andT+− for D = 0.15, respectively.

The transmission coefficients are calculated by averaging over different lattice con-
figurations,

T++ = 〈|γ++|2〉 T+− = 〈|γ+−|2〉. (12)

Figure 2 shows the transmission coefficients as a function of incoming electron energy
for two 2N = 8 oligomer chains for different disorder strengths. The edges of the energy
gap are approximately at±2tδ0 = ±0.4t . When the fluctuations are absent (no disorder),
four resonant tunnelling peaks are observed inT++ and their energies correspond to the
four discrete levels above the gap in the oligomer. In the absence of disorder,T+− is
identically zero. As the disorder strength increases, the transmission above the gap in the
T++-channel is greatly reduced and the peaks diminish in intensity. This is a consequence
of the loss of coherence of the incoming electron due to scattering resulting from the
disorder. In contrast, the transmission from the symmetry-broken channel (T+−) becomes
more and more pronounced with increase in the fluctuation strength. When the energy of the
incoming electron lies within the gap, the tunnelling isenhanced. This enhancement (due to
lattice-assisted tunnelling) becomes more pronounced as we increase the fluctuations. For
sufficiently strong fluctuations, the transmissions in both channels have a peak atE = 0
as a result of virtual soliton–antisoliton states. Note that the total transmissionT++ + T+−
is similar to that in the one-chain case and can be understood in terms of the electronic
density of states as a function of disorder strength [16, 18].

2.2.2. Loss of coherence between the two oligomer chains.If the oligomer chains are
perfect (without disorder), the motion of an electron in the oligomer is coherent. The relative
phase at the left-hand interface must be equal to that at the right-hand interface. However,
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Figure 3. The coherence factorλ for a device structure with two eight-atom oligomer chains
as a function of the energy of the incoming electron. The parameters are the same as for
figure 2. The solid, short-dashed, and long-dashed lines correspond toD = 0, 0.05, and 0.15,
respectively.

when the fluctuation effects are included, we can expect that the coherence between the
two chains will be partly lost due to the random scattering caused by disorder. Suppose the
incoming electron has the wave function

|ψi〉 = 1√
2

eikl(|l1〉 + eiφ0|l2〉) −∞ < l 6 0 (13)

for which the two chains have the relative phaseφ0. To quantify the fluctuation effects, we
define a coherence factor

λ = Re〈ei(φi−φ0)〉 (14)

whereφi is the relative phase of the two chains for the outgoing electron wave function,
which can be calculated from

eiφi = γ ∗1 γ2

|γ1||γ2| . (15)

Here we assume that the outgoing electron wave function has the form

|ψo〉 = 1√
2

eikl(γ1|l1〉 + γ2|l2〉) 2N + 16 l <∞. (16)

The definition of the coherence factor in equation (14), as we will see later, is independent
of the initial phaseφ0. In figure 3, we plot the coherence factorλ for two 2N = 8 oligomer
chains as a function of the energy of the incoming electron for different disorder strengths.
Without lattice fluctuations,λ does not depend on the energy of the incoming electron, and
is equal to unity everywhere. When the fluctuations are included, four valleys appear which
correspond to the four discrete levels (above the gap) in the oligomer. As we increase the
fluctuation strength, the coherence factorλ decreases, the valleys become broader, and the
overall structure diminishes.
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The coherence factor is related to the symmetry-breaking effects illustrated above. The
wave function of equation (13) can be written as

|ψi〉 = 1+ eiφ0

2
eikl|l+〉 + 1− eiφ0

2
eikl|l−〉 (17)

where∞ < l 6 0, and the outgoing electron has the wave function

|ψo〉 = 1+ eiφ0

2
eikl(γ++|l+〉 + γ+−|l−〉)+ 1− eiφ0

2
eikl(γ−+|l+〉 + γ−−|l−〉) (18)

with 2N + 16 l <∞. It is straightforward to show thatγ+− = γ−+, γ++ = γ−−, and we
have

λ = Re

〈
(γ ∗++ + γ ∗+−)(γ++ − γ+−)
|γ++ + γ+−||γ++ − γ+−|

〉
(19)

which clearly shows thatλ is a well-defined parameter with which to quantify the fluctuation
strength, and is independent ofφ0.

Figure 4. A schematic diagram showing the 2D tunnel structure. The coupling between the
chains arises from the electronic hopping in the metal contacts.

3. 2D structures

For a 2D array of oligomer chains sandwiched between two metal contacts (figure 4), the
Hamiltonian can be written as

H =
∑
lm

[βlmc
†
lmclm − tlm(c†lmcl+1m + HC)− t ′lm(c†lmclm+1+ HC)] (20)

with

βlm =
{
E0 −∞ < l 6 −1 or 2N + 16 l <∞
0 06 l 6 2N .

(21)

and

tlm =
{
t0 −∞ < l 6 −1 or 2N + 16 l <∞
hml,l+1 06 l 6 2N

(22)
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wherehml,l+1 = −t [1− (−1)lδml ]. Herec†lm (clm) denotes the electron creation (annihilation)
at site l of themth chain. The lattice of each oligomer chain fluctuates around the equi-
librium position,δml = δ0+ ξml , andξml has the Gaussian distribution (static white noise)

〈ξml ξm
′

l′ 〉 = 2Dmδl,l′δm,m′ . (23)

We assume that there are no couplings between oligomer chains, and, for simplicity, that
the metal has a square lattice and is described by a two-dimensional tight-binding model,

t ′lm =
{
t0 −∞ < l 6 0 or 2N 6 l <∞
0 16 l 6 2N .

(24)

In the direction perpendicular to the oligomer chains (thex-direction), we use periodic
boundary conditions. Thus the momentumkx is discrete,kx = jπ/M, j is an integer,
and−M/2 < j 6 M/2. We solve the Schrödinger equationH |ψ〉 = E|ψ〉 to calculate
the transmission and reflection coefficients of this 2D structure. The momentum is not
conserved when the fluctuations are considered, while the energy must be conserved.
Suppose that the incoming electron has momentum (kx, kz); then the reflection and
transmission waves can possess different momenta (k′x, k

′
z) which satisfy the restriction

E(kx, kz) = E(k′x, k′z). For the structure considered here, we have the dispersion relation
E(kx, kz) = −2t (coskx + coskz) + E0. The wave function of this 2D structure can be
written as

|ψ〉 =
∑
lm

Clm|l, m〉 (25)

where−∞ < l <∞ and 16 m 6 M. In the metal,

Clm = eikxm+ikzl +
∑
k′x

γ Lk′x
e−ik′zl+ik′xm ∞ < l 6 0 (26)

Clm =
∑
k′x

γ Rk′x
eik′z[l−(2N+1)]+ik′xm 2N + 16 l <∞. (27)

The wave function in the oligomer chains is determined by matching the boundary
conditions at the interfaces. Therefore, we have a set of equations from which we obtain
the coefficientsγ Lk′x andγ Rk′x (appendix A).

Thus we can calculate the flux by averaging over different lattice configurations. The
reflected flux is [19]

Rk′x =
〈
|γ Lk′x |2

∣∣∣∣ ∂E∂k′z
∣∣∣∣/∣∣∣∣ ∂E∂kz

∣∣∣∣〉 = 〈|γ Lk′x |2
∣∣∣∣sink′z
sinkz

∣∣∣∣〉 (28)

and the transmitted flux is

Tk′x =
〈
|γ Rk′x |2

∣∣∣∣sink′z
sinkz

∣∣∣∣〉. (29)

The total flux must be conserved, and thus we have the restriction∑
k′x

Rk′x +
∑
k′x

Tk′x = 1. (30)
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Figure 5. A schematic diagram depicting the scattered (thin arrows) and the specular (thick
arrows) flux.

Figure 6. The total electronic transmission for a two-dimensional device structure with twenty
eight-atom oligomer chains as a function of the energy of the incoming electron. The parameters
are the same as for figure 2, andE0 = 2t0. Every oligomer chain has the same fluctuation
strength. The momentumkx of the incoming electron is set equal to zero. The solid, short-
dashed, and long-dashed lines correspond toD = 0, 0.05, and 0.15, respectively.

3.1. All oligomer chains disordered

If all oligomer chains in the 2D oligomer layer are the same and each of them has the same
lattice fluctuation strength, then

Dm = D 16 m 6 M. (31)

Due to the lattice fluctuations, each oligomer chain has a different lattice configuration at a
specific time. Thus, translation symmetry along the direction perpendicular to the oligomer
chains does not exist andkx is no longer conserved. We can define a ‘scattered flux’
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Figure 7. The scattered flux for a two-dimensional device structure with twenty eight-atom
oligomer chains as a function of the energy of the incoming electron. The parameters are the
same as for figure 6, and every oligomer chain has the same fluctuation strength. The momentum
kx of the incoming electron is fixed to be zero. The solid, short-dashed, and long-dashed lines
correspond toD = 0.025, 0.05, and 0.15, respectively. The inset shows the parameterη as a
function of the fluctuation strengthD.

(figure 5), which is the flux that deviates from the ‘specular’ path (k′x = kx) for a given
incoming electron with energyE,

S(E) =
∑
k′x 6=kx

(Rk′x + Tk′x ). (32)

Figure 6 shows the total transmission
∑

k′x
Tk′x as a function of the incoming electron energy

for M = 20 oligomer chains of length 2N = 8 for different disorder strengths. It shows
that the fluctuations decrease the transmission at discrete levels of the oligomer chains, and
enhance it at energies in the gap of the ordered oligomer. For large disorder strength there
is a peak atE = 0. These results are consistent with our single-chain calculations [16].
The asymmetry between theE < 0 andE > 0 regions in figure 6 is due to the finite system
size [20]. We also depict the scattered flux as a function of the incoming electron energy in
figure 7. It is shown that the scattered flux becomes important as the fluctuations become
strong. The scattered flux also shows eight peaks reflecting the eight discrete electronic
energy levels of the oligomer. We define a parameterη to quantify the integrated scattered
flux:

η =
(∫

dE S(E)

)/∫
dE. (33)
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The inset of figure 7 showsη versus the fluctuation strengthD. WhenD is small,η increases
superlinearly asD increases; whenD is large,η increases sublinearly with increasingD,
and gradually saturates.

Figure 8. The charge densitiesρLm andρRm for the two-dimensional device structure with twenty
eight-atom oligomer chains. Panel (a) is forρLm and (b) for ρRm . Only the tenth oligomer
chain has lattice fluctuations. The energy of the incoming electron isE = 1.3226t . The solid,
short-dashed, and long-dashed lines correspond toD = 0, 0.05, and 0.15, respectively.

3.2. One chain disordered

If only the middle chain in an array of oligomer chains has lattice fluctuations, then

Dm =
{
D m = M/2
0 otherwise.

(34)

The fluctuations in this ‘special’ chain also break the translation symmetry along thex-
direction, and the scattered flux appears as well. In order to see how this special chain
affects tunnelling, we focus on the real-space wave function at the interfaces. For an
incoming electron with a given momentum(kx, kz), the reflection or transmission waves
have a complexk′z for somek′x due to the restriction of energy conservation, which means
that the reflected or transmitted wave is evanescent and does not carry any flux. To illustrate
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Figure 9. The charge densitiesρLm andρRm for the two-dimensional device structure with twenty
eight-atom oligomer chains. Panel (a) is forρLm and (b) forρRm . Only the tenth oligomer chain
has lattice fluctuations. The energy of the incoming electron isE = 0. The solid, short-dashed,
and long-dashed lines correspond toD = 0, 0.05, and 0.15, respectively.

real flux flow, we define a ‘charge density’ at the interfaces, which is relevant to the flux.
At the left-hand interface

ρLm =
∣∣∣∣∑
k′x

γ Lk′x
eik′xmθ(k′z)

∣∣∣∣2 (35)

whereθ(k′z) = 0 for complexk′z, and otherwiseθ(k′z) = 1. Here only the waves which
contribute to the flux are included. Similarly, at the right-hand interface

ρRm =
∣∣∣∣∑
k′x

γ Rk′x
eik′xmθ(k′z)

∣∣∣∣2. (36)

Figure 8 showsρLm (figure 8(a)) andρRm (figure 8(b)) for different fluctuation strengths
for the incoming electron with energyE = 1.3226t , which corresponds to the second
positive-energy resonant level of the oligomer chain. We see that the ‘charge density’ has
an oscillatory distribution around the disordered chain. The charge density at the left-hand
interface has a peak at the disordered chain, while the charge density at the right-hand
interface has a valley at that chain. Both the amplitudes and the widths of the peak and the
valley increase as the fluctuation strength increases. These charge densities at the interfaces
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Figure 10. The correlation functionf (1) as a function of the energy of the incoming electron.
The solid, short-dashed, and long-dashed lines correspond toD = 0, 0.05, and 0.15, respectively.

indicate that the electrons can optimize their path by avoiding the disordered chain, so as to
achieve a larger tunnelling probability across the oligomer chains. We also plot in figure 9
ρLm (figure 9(a)) andρRm (figure 9(b)) for the incoming electron with energyE = 0, which
lies in the middle of the gap. We see from figure 9 that when the fluctuations are included
in the disordered chain,ρL decreases andρR increases, which means that the disordered
chain provides an optimized path for larger transmission. This result is reasonable, since
we know from our single-chain calculation that the lattice fluctuations enhance tunnelling
if the incoming electron’s energy is in the gap of the ordered oligomer chain.

3.3. The correlation function

To further explore the lattice fluctuation effects, we study the coherence of the outgoing
electron at the right-hand interface. We define the correlation function

f (l) =
〈(∑

m

C∗2NmC2Nm+l

)/(∑
m

|C2Nm|2
)〉
. (37)

In the absence of fluctuations, all chains are identical andC2Nm = C2Nm+l . Thus we have
f (l) = 1. When the fluctuations are considered, the coherence of the outgoing electron wave
function is expected to be partly lost, and the correlation function will be less than unity. In
figure 10, we depict the correlation functionf (1) versus the energy of the incoming electron
for different fluctuation strengths. In the presence of lattice fluctuations, we observe that the
correlation function decreases and some valleys appear, which correspond to the discrete
electronic levels of the oligomer. As we increase the fluctuation strength, these valleys
become broader and the overall structure is diminished.
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Figure 11. The total electronic transmission for a three-dimensional device structure with 6×6
eight-atom oligomer chains as a function of the energy of the incoming electron. The parameters
aret = t0 = 1, t1 = 0.8, δ0 = 0.2, andE0 = 4t0. Every oligomer chain has the same fluctuation
strength. The momentakx and ky of the incoming electron are set equal to zero. The solid,
short-dashed, and long-dashed lines correspond toD = 0, 0.05, and 0.15, respectively.

4. 3D structures

We next consider anM×M oligomer chain array sandwiched between two metal leads which
have a simple cubic lattice. The metal is described simply by a tight-binding Hamiltonian
with the dispersion relation

E = E0− 2t0(coskz + coskx + cosky). (38)

For the metal/oligomer/metal tunnelling structure, the wave function can be written as

|ψ〉 =
∑
lmn

Clmn|lmn〉 16 m, n 6 M (39)

wherem andn are, respectively, the chain indices along thex- andy-directions, which are
perpendicular to the oligomer chains. In the metal, the wave function is a linear combination
of reflected (transmitted) waves with different momenta,

Clmn = eikxm+ikyn+ikzl +
∑
k′x ,k′y

γ Lk′x ,k′y
e−ik′zl+ik′xm+ik′yn ∞ < l 6 0 (40)

Clmn =
∑
k′x ,k′y

γ Rk′x ,k′y
eik′z[l−(2N+1)]+ik′xm+ik′yn 2N + 16 l <∞. (41)

Like for the 2D case, fromγ Lk′x ,k′y andγ Rk′x ,k′y (appendix B), we can compute the reflected
flux

Rk′x ,k′y =
〈
|γ Lk′x ,k′y |2

∣∣∣∣sink′z
sinkz

∣∣∣∣〉 (42)
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Figure 12. The scattered flux for a three-dimensional device structure with 6× 6 eight-atom
oligomer chains as a function of the energy of the incoming electron. The parameters are the
same as for figure 11, and every oligomer chain has the same fluctuation strength. The momenta
kx andky of the incoming electron are fixed to be zero. The solid, short-dashed, and long-dashed
lines correspond toD = 0.025, 0.05, and 0.15, respectively. The inset shows the parameterη

as a function of the fluctuation strengthD.

and the transmitted flux

Tk′x ,k′y =
〈
|γ Rk′x ,k′y |2

∣∣∣∣sink′z
sinkz

∣∣∣∣〉. (43)

In the case in which all oligomer chains have the same fluctuation strength, we calculate
the total transmitted flux

∑
k′x ,k” y Tk′x ,k′y for varying incoming electron energies, as shown in

figure 11. The effects of lattice fluctuations are similar to those in the corresponding 2D
case, i.e. they reduce the transmission when the energy of the incoming electron is larger
than the gap of the ordered oligomer and enhance the transmission when the energy lies
in the gap of the ordered oligomer. Again, the asymmetry betweenE < 0 andE > 0 is
attributed to the finite-system effect [20]. The scattered flux is calculated from

S(E) =
∑

(k′x ,k′y )6=(kx ,ky )
(Rk′x ,k′y + Tk′x ,k′y ) (44)

and is shown in figure 12. The trend in the variation of the scattered flux is very similar
to the 2D case. The inset showsη defined in equation (33) as a function of the fluctuation
strength. The integrated scattered flux increases superlinearly as the strength of lattice
fluctuations increases when the fluctuation strength is small, and increases sublinearly and
eventually saturates when the fluctuation strength is large, analogously to the situation for
2D structures.
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Figure 13. The charge densitiesρLmn andρRmn for the three-dimensional device structure with
6× 6 eight-atom oligomer chains. Only oligomer chain (3, 3) has lattice fluctuations, and the
fluctuation strengthD is equal to 0.15. The parameters are same as for figure 11. Panel (a)
describesρLmn and (b) describesρRmn for the incoming electron with energyE = 1.3226t . Panels
(c) and (d) describeρLmn andρRmn for E = 0, respectively.

In the case in which only one special chain (in the middle) has lattice fluctuations, we
calculate the ‘charge density’ at the left-hand interface:

ρLmn =
∣∣∣∣∑
k′x ,k′y

γ Lk′x ,k′y
eik′xm+ik′ynθ(k′z)

∣∣∣∣2 (45)

and at the right-hand interface:

ρRmn =
∣∣∣∣∑
k′x ,k′y

γ Rk′x ,k′y
eik′xm+ik′ynθ(k′z)

∣∣∣∣2. (46)

From the panels depicting different situations in figure 13, we observe again how the
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Figure 13. (Continued)

electrons optimize their tunnelling path across the oligomer chains to achieve a larger
transmission. When the energy of the incoming electron is larger than the gap of the
ordered oligomer, the electron avoids the disordered chain. In contrast, when the energy
of the incoming electron lies in the gap of the ordered oligomer, the electron prefers the
disordered chain, analogously to the situation for 2D structures.

The correlation function at the right-hand interface can be defined similarly to the 2D
case:

f (l, l′) =
〈(∑

mn

C∗2NmnC2Nm+ln+l′
)/(∑

mn

|C2Nmn|2
)〉

(47)

which has features similar to those of the 2D correlation function: as the fluctuation strength
increases, the correlation function decreases and the valleys become broader. This is
illustrated in figure 14, which shows the correlation functionf (1, 0) as a function of the
energy of the incoming electron for different fluctuation strengths.
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Figure 14. The correlation functionf (1, 0) as a function of the energy of the incoming electron.
The solid, short-dashed, and long-dashed lines correspond toD = 0, 0.05, and 0.15, respectively.

5. Concluding remarks

In conclusion, we have shown that lattice fluctuations qualitatively change the electronic
transmission properties of conjugated oligomers. They reduce the electronic transmission
at energies corresponding to electronic levels of the ordered oligomer, and enhance the
electronic transmission at energies in the gap of the ordered oligomer. These results are
true in general for 1D, 2D, and 3D tunnel structures. This is consistent with a recent quantum
mechanical simulation and experimental measurements of the photoelectron kinetic energy
distribution and transmission function for thin organic films [21, 22]. Particularly for 2D
and 3D structures, because of unavoidable lattice fluctuations in conjugated oligomers, the
momentum of the incoming electron is not conserved, and thus the scattered flux becomes
important.

We have not explicitly included electron correlation effects in our calculations.
It is known that these effects are important in determining several materials
e.g. photoluminescence due to exciton states [23]. Nevertheless, we note that for
single-electron tunnelling, considered here, the effect of correlations is predominantly to
renormalize the parameters in equation (4). The latter would change the discrete electronic
levels and therefore shift the energy of the resonance peaks. We have also neglected other
effects such as the presence of a Coulomb blockade at the metal–oligomer contact which
might be important when the coupling between the metal and oligomer is very weak or
for a very small tunnelling device such as a quantum dot. However, for the long oligomer
chains considered here, we expect this effect to be unimportant.

The present results are relevant to the modelling of ballistic electron emission micro-
scopy (BEEM) at metal/conjugated-oligomer interfaces. BEEM is a useful technique for
studying scattering at and transport across an interface, since BEEM directly measures the
current across interfaces for a well-characterized distribution of incident electrons [24]. The
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scattered flux and the change in the transmission coefficient due to lattice fluctuations must
be taken into account to correctly account for the BEEM data at metal/conjugated-oligomer
interfaces [25, 26].

Our studies have shown that the efficiency of scattering processes is enhanced by
microscopic disorder. The electronic transmission peaks in the gaps of degenerate oligomers
can be associated with virtual soliton–antisoliton states. The lattice fluctuations also break
the spatial mirror symmetry of the two-chain structure and destroy the translation invariance
along the direction perpendicular to the oligomer chains, resulting in the scattered flux
which is likely to be much more important for the organic tunnelling structures than
for their inorganic counterparts. The concept of a filamentary flow provides a means
of experimentally enhancing transmission by controlled disordering of specific chains.
Experimental determination of the lattice fluctuation strength to quantify the disorder (D)
for various conjugated polymers, however, remains an important challenge. Apart from
a basic understanding of disorder, our results should also be important for improving the
efficiency of organic electronic devices.
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Appendix A. 2D coefficients

For themth oligomer chain of the 2D structure, we have a set of equations


−E hm12 0 0 ... 0
hm12 −E hm23 0 ... 0
. . . . ... .

. . . . ... .

0 ... 0 hm2N−2,2N−1 −E hm2N−1,2N
0 ... 0 0 hm2N−1,2N −E




C1m

C2m

.

.

.

C2N,m

 =


t1C0m

0
.

.

0
t1C2N+1m

 .
(A1)

Denoting the above 2N × 2N symmetric matrix asGm, we have

C1m = (G−1
m )11(C0mt1)+ (G−1

m )1,2N(C2N+1mt1)

C2Nm = (G−1
m )2N,1(C0mt1)+ (G−1

m )2N,2N(C2N+1mt1).
(A2)

SubstitutingC1m andC2Nm into the tight-binding equations

EC0m = −t0C−1m − t0C0m−1− t0C0m+1− t1C1m

EC2N+1m = −t0C2N+2m − t0C2N+1m−1− t0C2N+1m+1− t1C2Nm
(A3)
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and using the notation

1

M

∑
m

(G−1
m )11t

2
1e−ikxm = D11(kx)

1

M

∑
m

(G−1
m )1,2Nt

2
1e−ikxm = D1,2N(kx)

1

M

∑
m

(G−1
m )2N,1t

2
1e−ikxm = D2N,1(kx)

1

M

∑
m

(G−1
m )2N,2Nt

2
1e−ikxm = D2N,2N(kx)

(A4)

we achieve the equations forγ Lk′x andγ Rk′x in momentum space∑
k′x

{[f (k′′z )+ t0eik′′z ]δk′′x ,k′x +D11(k
′′
x − k′x)}γ Lk′x +

∑
k′x

D1,2N(k
′′
x − k′x)γ Rk′x

= − [f (k′′z )+ t0e−ik′′z ]δk′′x ,kx −D11(k
′′
x − kx) (A5a)∑

k′x

[D2N,1(k
′′
x − k′x)]γ Lk′x +

∑
k′x

{[f (k′′z )+ t0eik′′z ]δk′′x ,k′x +D2N,2N(k
′′
x − k′x)}γ Rk′x

= −D2N,1(k
′′
x − kx) (A5b)

where

f (k′′z ) = E − E0+ 2t0 cosk′′x = −2t0 cosk′′z . (A6)

Appendix B. 3D coefficients

Following the same procedure as was considered for 2D structures, we obtain the equations
for γ Lk′x ,k′y andγ Rk′x ,k′y for an incoming electron with a fixed momentum(kx, ky, kz),

∑
k′x ,k′y

{[g(k′′z )+ t0eik′′z ]δk′′x ,k′x δk′′y ,k′y +D11(k
′′
x − k′x, k′′y − k′y)}γ Lk′x ,k′y

+
∑
k′x ,k′y

D1,2N(k
′′
x − k′x, k′′y − k′y)γ Rk′x ,k′y

= − [g(k′′z )+ t0e−ik′′z ]δk′′x ,kx δk′′y ,ky −D11(k
′′
x − kx, k′′y − ky) (B1a)∑

k′x ,k′y

[D2N,1(k
′′
x − k′x, k′′y − k′y)]γ Lk′x ,k′y

+
∑
k′x ,k′y

{[g(k′′z )+ t0eik′′z ]δk′′x ,k′x δk′′y ,k′y +D2N,2N(k
′′
x − k′xk′′y − k′y)}γ Rk′x ,k′y

= −D2N,1(k
′′
x − kx, k′′y − ky) (B1b)

where

g(k′′z ) = E − E0+ 2t0(cosk′′x + cosk′′y ) = −2t0 cosk′′z (B2)
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and

D11(kx, ky) = 1

M2

∑
mn

(G−1
mn)11t

2
1e−i(kxm+kyn)

D1,2N(kx, ky) = 1

M2

∑
mn

(G−1
mn)1,2Nt

2
1e−i(kxm+kyn)

D2N,1(kx, ky) = 1

M2

∑
mn

(G−1
mn)2N,1t

2
1e−i(kxm+kyn)

D2N,2N(kx, ky) = 1

M2

∑
mn

(G−1
mn)2N,2Nt

2
1e−i(kxm+kyn).

(B3)

HereGmn is the 2N × 2N matrix of equation (A1) for chain(m, n).
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